GIET POLYTECHNIC, JAGATPUR, CUTTACK

LESSON PLAN

Discipline: ETC,CSE	Semester: 3 rd	Name Of The Teaching Faculty: SUGANDHA PUSPITA MADHUJHARA
Subject: Digital Electronics(Th-3)	No. Of Days Per Week Class Allotted: 04 P	Semester From Date: 01.07.2024 To Date: 08.11.2024 No. of weeks: 15
Week	Class Day	Theory Topic
1" week	1 st	UNIT1: BASIC OF DIGITAL ELECTRONICS 1.1: Number system: binary, octal, decimal, hexadecimal- conversion from one system to another
	2 nd	1.1: Number system: binary, octal, decimal, hexadecimal- conversion from one system to another
	314	 1.2: Arithmetic operation(addition, subtraction, multiplication, division),1's & 2's compliment of binary numbers & subtraction using complement method
	4 th	 1.2: Arithmetic operation(addition, subtraction, multiplication, division),1's & 2's compliment of binary numbers & subtraction using complement method
2 ⁿⁿ week	1"	 1.3: Digital code & its application and distinguish between weighted and non weighted-code, binary code, excess 3 & gray codes
	2 rd	 1.3: Digital code & its application and distinguish between weighted and non weighted-code, binary code, excess 3 & gray codes
	3 rd	 1.4: Logic gates(AND,OR,NAND,NOR,EX-OR,EX-NOR)-symbol function,expression,truth table & timing diagram
	4 th	 1.4: Logic gates(AND,OR,NAND,NOR,EX-OR,EX-NOR)-symbol function,expression,truth table & timing diagram
	1st	> 1.5: Universal gates & realisation
	2 nd	 1.6: Boolean Algebra, Boolean expression, Demorgan's theorems
3 rd week	3 rd	> 1.7: Represent logic expression : SOP & POS form
	4 th	 1.8: K-map (3 & 4 variables) and minimization of logical expression ,Don't care condition
4 th week	151	UNIT 2: COMBINATIONAL LOGIC CIRCUIT 2.1.1: Half adder, full adder
	2 nd	2.1.2: Half subtractor, full subtractor
	3 rd	2.1.3: Serial & parallel binary 4 bit adder
	4 th	> 2.1.3: Serial & parallel binary 4 bit adder
	1 st	> 2.2.1: Multiplexer(4:1)
5 th week	2 nd	> 2.2.2: Demultiplexer(1:4)
5" week	3 rd	> 2.2.3: DECODER
	4 th	> 2.2.4: ENCODER
	1 st	> 2.2.5: Digital comparator(3 bit)
	2 nd	 2.3:7 segment decoder(definition, gate level of logic circuit)
V. WOOK	3 rd	> 2.3: 7 segment decoder(truth table & application)
	4 th	> 2.3: 7 segment decoder(truth table & application
7 th week	1st	UNIT 3: SEQUENTIAL LOGIC CIRCUIT 3.1: Principle of flip flop operation, its types
	2 nd	> 3.1: Principle of flip flop operation, its types
	3 rd	- 3.2.1: SR flip flop using NAND
	4 th	> 3.22; SR flip flop using NOR Latch(unclocked)
8 th week	1 st	> 3.22: SR flip flop using NOR Latch(unclocked)
	200	> 3.3.1: Clocked SR flip flop (Logic circuit, truth table & application

	2 nd	Working of Binary-Decimal Encoder & 3 X 8 Decoder
	3rd	➤ Working of Two bit magnitude comparator
	4 th	> Working of Two bit magnitude comparator
-	5 th	REVISION
	151	REVISION
6 th week	2 nd	3. SEQUENTIAL LOGIC CIRCUITS Give the idea of Sequential logic circuits
	3 rd	> State the necessity of clock and give the concept of level clocking and edge triggering
	4 th	- Clocked SR flip flop with preset and clear inputs
	5 th	Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
7 th week	15	State the necessity of clock and give the concept of level clocking and edge triggering
	2 nd	Clocked SR flip flop with preset and clear inputs
	3 rd	 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
	4 th	Construct level clocked JK flip flop using S-R flip-flop and oxplain with truth table
	5 th	Concept of race around condition and study of master slave JK
8 th week	1 st	Construct level clocked JK flip flop using S-R flip-flop and
	2 nd	Give the truth tables of edge triggered D and T flip flops and draw their symbols.
	3 rd	> Applications of flip flops
	4 th	> 4-bit asynchronous counter and its timing diagram
	5 th	 4-bit asynchronous counter and its timing diagram
	1**	> Asynchronous decade counter
	2 nd	> 4-bit synchronous counter
	3rd	Distinguish between synchronous and asynchronous counters
9" week	4 th	State the need for a Register and list the four types of register
	5 th	> Working of SISO, SIPO, PISO, PIPO Register with truth table
	1 st	> Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop
	2 nd	> REVISION
10 th week	3 rd	8085 MICROPROCESSOR
	4 th	> Introduction to Microprocessors, Microcomputers
The sale	5 th	 Architecture of Intel 8085A Microprocessor and description of each block.
11 th week	1 st	 Pin diagram and description.

	3 rd	3.3.1: Clocked D flip flop (Logic circuit, truth table & application)
8 th week	4 th	> 3.3.1: Clocked JK flip flop (Logic circuit, truth table & application
	1 st	> 3.3.1: Clocked T flip flop (Logic circuit, truth table & application)
9 th week	2 nd	> 3.3.1: Clocked JK flip flop (Logic circuit, truth table & application
	3rd	 3.3.1: Clocked Master slave flip flop (Logic circuit, truth table & application)
	4 th	> 3.4: Concept of racing and how it can be avoided
	1 st	UNIT 4: REGISTERS, MEMORIES & PLD
10 th week		 4.1.1: Shift register- serial in & serial out, serial in parallel out
	2 nd	► 4.1.2: Parallel in serial out & parallel in parallel out
	3 rd	 4.2: Universal shift registers- applications
	4 th	→ 4.3: Types of counter & application
	1 st	 4.4.1: Binary counter , Asynchronous ripple counter(up & down)
14.00	2 nd	- 4.4.2: Decade counter, synchronous counter, Ring counter
11 th week	3 rd	 4.5: Concept of memories- RAM, ROM, static RAM, dynamic RAM PS RAM
	4 th	▶ 4.6: Basic concept of PLD & application
	4.0	UNIT 5: A/D & D/A CONVERTER
1 2 20	14	> 5.1: Necessity of A/D & D/A converters
100	2 nd	> 5.1: Necessity of A/D & D/A converters
12" week	3 rd	> 5.2: D/A conversion using weighted resistor methods
	4 th	5.3: D/A conversion using R-2R ladder (Weighted resitors) network
	1 st	5.3: D/A conversion using R-2R ladder (Weighted resitors) network
	2 nd	> 5.4: A/D conversion using counter method
13th week	3 rd	> 5.5: Conversion using successive approximate method
		UNIT 6: LOGIC FAMILIES
	4 th	6.1: Various logic families & categories according to the IC fabrication process
6.4	1 st	 6.1: Various logic families & categories according to the IC fabrication process
	2"0	6.2.1: Characteristics of Digital ICs- propagation Delay
14 ⁿ week	3 rd	 6.2.2: Characteristics of Digital ICs- fan-out, fan-in, power Dissipation, Noise Margin
	4 th	 6.2.3: Characteristics of Digital ICs- power supply requirement & speed with reference to logic families
	1 st	 6.3.1: Features, circuit operation & various applications of TTL(NAND)
15 th week	2 nd	 6.3.1: Features, circuit operation & various applications of CMOS(NAND & NOR)
	3 rd	REVISION
	4 th	> REVISION

Signature of Faculty

Signature of Sr. Lectorer

Head of Dopl.

Eightigal & ETC Free

C. F. T. II DUY).

Signature of Principal U