GIET POLYTECHNIC, JAGATPUR, CUTTACK ## LESSON PLAN | Discipline:
ETC,CSE | Semester: 3 rd | Name Of The Teaching Faculty: SUGANDHA PUSPITA MADHUJHARA | |--|---|--| | Subject:
Digital
Electronics(Th-3) | No. Of Days Per
Week Class
Allotted: 04 P | Semester From Date: 01.07.2024 To Date: 08.11.2024 No. of weeks: 15 | | Week | Class Day | Theory Topic | | 1" week | 1 st | UNIT1: BASIC OF DIGITAL ELECTRONICS 1.1: Number system: binary, octal, decimal, hexadecimal- conversion from one system to another | | | 2 nd | 1.1: Number system: binary, octal, decimal, hexadecimal-
conversion from one system to another | | | 314 | 1.2: Arithmetic operation(addition, subtraction, multiplication,
division),1's & 2's compliment of binary numbers & subtraction
using complement method | | | 4 th | 1.2: Arithmetic operation(addition, subtraction, multiplication,
division),1's & 2's compliment of binary numbers & subtraction
using complement method | | 2 ⁿⁿ week | 1" | 1.3: Digital code & its application and distinguish between
weighted and non weighted-code, binary code, excess 3 & gray
codes | | | 2 rd | 1.3: Digital code & its application and distinguish between
weighted and non weighted-code, binary code, excess 3 & gray
codes | | | 3 rd | 1.4: Logic gates(AND,OR,NAND,NOR,EX-OR,EX-NOR)-symbol
function,expression,truth table & timing diagram | | | 4 th | 1.4: Logic gates(AND,OR,NAND,NOR,EX-OR,EX-NOR)-symbol
function,expression,truth table & timing diagram | | | 1st | > 1.5: Universal gates & realisation | | | 2 nd | 1.6: Boolean Algebra, Boolean expression, Demorgan's theorems | | 3 rd week | 3 rd | > 1.7: Represent logic expression : SOP & POS form | | | 4 th | 1.8: K-map (3 & 4 variables) and minimization of logical
expression ,Don't care condition | | 4 th week | 151 | UNIT 2: COMBINATIONAL LOGIC CIRCUIT 2.1.1: Half adder, full adder | | | 2 nd | 2.1.2: Half subtractor, full subtractor | | | 3 rd | 2.1.3: Serial & parallel binary 4 bit adder | | | 4 th | > 2.1.3: Serial & parallel binary 4 bit adder | | | 1 st | > 2.2.1: Multiplexer(4:1) | | 5 th week | 2 nd | > 2.2.2: Demultiplexer(1:4) | | 5" week | 3 rd | > 2.2.3: DECODER | | | 4 th | > 2.2.4: ENCODER | | | 1 st | > 2.2.5: Digital comparator(3 bit) | | | 2 nd | 2.3:7 segment decoder(definition, gate level of logic circuit) | | V. WOOK | 3 rd | > 2.3: 7 segment decoder(truth table & application) | | | 4 th | > 2.3: 7 segment decoder(truth table & application | | 7 th week | 1st | UNIT 3: SEQUENTIAL LOGIC CIRCUIT 3.1: Principle of flip flop operation, its types | | | 2 nd | > 3.1: Principle of flip flop operation, its types | | | 3 rd | - 3.2.1: SR flip flop using NAND | | | 4 th | > 3.22; SR flip flop using NOR Latch(unclocked) | | 8 th week | 1 st | > 3.22: SR flip flop using NOR Latch(unclocked) | | | 200 | > 3.3.1: Clocked SR flip flop (Logic circuit, truth table & application | | | 2 nd | Working of Binary-Decimal Encoder & 3 X 8 Decoder | |-----------------------|-----------------|---| | | 3rd | ➤ Working of Two bit magnitude comparator | | | 4 th | > Working of Two bit magnitude comparator | | - | 5 th | REVISION | | | 151 | REVISION | | 6 th week | 2 nd | 3. SEQUENTIAL LOGIC CIRCUITS Give the idea of Sequential logic circuits | | | 3 rd | > State the necessity of clock and give the concept of level clocking and edge triggering | | | 4 th | - Clocked SR flip flop with preset and clear inputs | | | 5 th | Construct level clocked JK flip flop using S-R flip-flop and explain with truth table | | 7 th week | 15 | State the necessity of clock and give the concept of level
clocking and edge triggering | | | 2 nd | Clocked SR flip flop with preset and clear inputs | | | 3 rd | Construct level clocked JK flip flop using S-R flip-flop and
explain with truth table | | | 4 th | Construct level clocked JK flip flop using S-R flip-flop and oxplain with truth table | | | 5 th | Concept of race around condition and study of master slave JK | | 8 th week | 1 st | Construct level clocked JK flip flop using S-R flip-flop and | | | 2 nd | Give the truth tables of edge triggered D and T flip flops and draw their symbols. | | | 3 rd | > Applications of flip flops | | | 4 th | > 4-bit asynchronous counter and its timing diagram | | | 5 th | 4-bit asynchronous counter and its timing diagram | | | 1** | > Asynchronous decade counter | | | 2 nd | > 4-bit synchronous counter | | | 3rd | Distinguish between synchronous and asynchronous counters | | 9" week | 4 th | State the need for a Register and list the four types of register | | | 5 th | > Working of SISO, SIPO, PISO, PIPO Register with truth table | | | 1 st | > Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop | | | 2 nd | > REVISION | | 10 th week | 3 rd | 8085 MICROPROCESSOR | | | 4 th | > Introduction to Microprocessors, Microcomputers | | The sale | 5 th | Architecture of Intel 8085A Microprocessor and description of
each block. | | 11 th week | 1 st | Pin diagram and description. | | | 3 rd | 3.3.1: Clocked D flip flop (Logic circuit, truth table & application) | |-----------------------|-----------------|--| | 8 th week | 4 th | > 3.3.1: Clocked JK flip flop (Logic circuit, truth table & application | | | 1 st | > 3.3.1: Clocked T flip flop (Logic circuit, truth table & application) | | 9 th week | 2 nd | > 3.3.1: Clocked JK flip flop (Logic circuit, truth table & application | | | 3rd | 3.3.1: Clocked Master slave flip flop (Logic circuit, truth table & application) | | | 4 th | > 3.4: Concept of racing and how it can be avoided | | | 1 st | UNIT 4: REGISTERS, MEMORIES & PLD | | 10 th week | | 4.1.1: Shift register- serial in & serial out, serial in parallel out | | | 2 nd | ► 4.1.2: Parallel in serial out & parallel in parallel out | | | 3 rd | 4.2: Universal shift registers- applications | | | 4 th | → 4.3: Types of counter & application | | | 1 st | 4.4.1: Binary counter , Asynchronous ripple counter(up & down) | | 14.00 | 2 nd | - 4.4.2: Decade counter, synchronous counter, Ring counter | | 11 th week | 3 rd | 4.5: Concept of memories- RAM, ROM, static RAM, dynamic RAM PS RAM | | | 4 th | ▶ 4.6: Basic concept of PLD & application | | | 4.0 | UNIT 5: A/D & D/A CONVERTER | | 1 2 20 | 14 | > 5.1: Necessity of A/D & D/A converters | | 100 | 2 nd | > 5.1: Necessity of A/D & D/A converters | | 12" week | 3 rd | > 5.2: D/A conversion using weighted resistor methods | | | 4 th | 5.3: D/A conversion using R-2R ladder (Weighted resitors) network | | | 1 st | 5.3: D/A conversion using R-2R ladder (Weighted resitors) network | | | 2 nd | > 5.4: A/D conversion using counter method | | 13th week | 3 rd | > 5.5: Conversion using successive approximate method | | | | UNIT 6: LOGIC FAMILIES | | | 4 th | 6.1: Various logic families & categories according to the IC fabrication process | | 6.4 | 1 st | 6.1: Various logic families & categories according to the IC fabrication process | | | 2"0 | 6.2.1: Characteristics of Digital ICs- propagation Delay | | 14 ⁿ week | 3 rd | 6.2.2: Characteristics of Digital ICs- fan-out, fan-in, power Dissipation, Noise Margin | | | 4 th | 6.2.3: Characteristics of Digital ICs- power supply requirement &
speed with reference to logic families | | | 1 st | 6.3.1: Features, circuit operation & various applications of
TTL(NAND) | | 15 th week | 2 nd | 6.3.1: Features, circuit operation & various applications of
CMOS(NAND & NOR) | | | 3 rd | REVISION | | | 4 th | > REVISION | Signature of Faculty Signature of Sr. Lectorer Head of Dopl. Eightigal & ETC Free C. F. T. II DUY). Signature of Principal U